
CS 151 Review #6

Review Review Review Review

Modules Modules Modules Modules

A key element of structured (well organized and documented) programs is their modularity: the breaking of code
into small units. These units, or modules, that do not return a value are called procedures in most languages and
are called void functions in C++. Although procedures is the authors’ preferred term, this manual uses the word
function to describe both void functions (discussed in this lesson set) and value returning functions (studied in
the next lesson set), as this is the terminology used in C++.

The int main() section of our program is a function and, up until now, has been the only coded module

used in our programs. We also have used predefined functions such as pow and sqrt which are defined in library
routines and “imported” to our program with the #include <cmath> directive. We now explore the means of
breaking our own code into modules. In fact, the main function should contain little more than “calls” to other
functions. Think of the main function as a contractor who hires sub-contractors to perform certain duties:
plumbers to do the plumbing, electricians to do the electrical work, etc. The contractor is in charge of the order in
which these sub-contract jobs are issued.

The int main()function consists mostly of calls to functions just like a contractor issues commands to

sub-contractors to come and do their jobs. A computer does many simple tasks (modules) that, when combined,
produce a set of complex operations. How one determines what those separate tasks should be is one of the skills
learned in software engineering, the science of developing quality software. A good computer program consists of
several tasks, or units of code, called modules or functions.

In simple programs most functions are called, or invoked, by the main function. Calling a function basically

means starting the execution of the instructions contained in that module. Sometimes a function may need
information “passed” in order to perform designated tasks.

If a function is to find the square root of a number, then it needs that number passed to it by the calling

function. Information is passed to or from a function through parameters. Parameters are the components of
communication between functions. Some functions do very simple tasks such as printing basic output statements
to the screen. These may be instructions to the user or just documentation on what the program will do. Such
functions are often called parameter-less functions since they do not require anything passed by the calling
procedure.

Sample Program 6.1a:

#include <iostream>
using namespace std;

void printDescription(); // Function prototype

int main()
{
 cout << "Welcome to the Payroll Program." << endl;

printDescription(); // Call to the function

cout << "We hoped you enjoyed this program." << endl;

return 0;

}

CS 151 Review #6

//***
// printDescription
//
// Task: This function prints a program description
// Data in: none
//
//***

void printDescription() // The function heading
{

cout << " *** "
 << endl << endl;

 cout << "This program takes two numbers (pay rate and hours)" << endl;
 cout << "and outputs gross pay. " << endl;

cout << " *** "
 << endl << endl;

}

In this example, three areas have been highlighted. Starting from the bottom we have the function itself which is
often called the function definition.

The function heading void printDescription()consists of the name of the function preceded by

the word void. The word void means that this function will not return a value to the module that called it. The
word preceding the name of a function can be the data type of the value that the function will return to the calling
function. The function name is followed by a set of parentheses. Just like the main function, all functions begin
with a left brace and end with a right brace. In between these braces are the instructions of the function. In this
case they consist solely of cout statements that tell what the program does.

Notice that this function comes after the main function. How is this function activated? It must be called by

either the main function or another function in the program. This function is called by main with the simple
instruction printDescription();.

A call to a function can be classified as the sixth fundamental instruction (see Lesson Set 2). Notice the call

consists only of the name of the function (not the word void preceding it) followed by the set of parentheses and
a semicolon. By invoking its name in this way, the function is called. The program executes the body of
instructions found in that function and then returns to the calling function (main in this case) where it executes
the remaining instructions following the call. Let us examine the order in which the instructions are executed.

The main function is invoked which then executes the following instruction:

 cout << "Welcome to the Pay Roll Program" << endl;

Next the call to the function printDescription is encountered which executes the following instructions:

cout << "**"
 << endl << endl;
cout << "This program takes two numbers (pay rate & hours)" << endl;
cout << "and outputs gross pay " << endl;
cout << "**"
 << endl << endl;

After all the instructions in printDescription are executed, control returns to main and the next
instruction after the call is executed:

cout << "We hoped you enjoyed this program" << endl;

The first highlighted section of the example is found before main() in what we call the global section of the
program. It is called a prototype and looks just like the function heading except it has a semicolon at the end.
Since our example has the “definition of the function” after the call to the function, the program will give us an
error when we try to call it if we do not have some kind of signal to the computer that the definition will be

CS 151 Review #6

forthcoming. That is the purpose of the prototype. It is a promise (contract if you will) to the compiler that a
void function called printDescription will be defined after the main function. If the
printDescription function is placed in the file before the main function which calls it, then the prototype
is not necessary. However, most C++ programs are written with prototypes so that main() can be the first
function.

Pass by Value Pass by Value Pass by Value Pass by Value

The following program, Sample Program 6.1b, is an extension of the code above. This program will take a pay rate
and hours worked and produce the gross pay based on those numbers. This can be done in another function called
calPaycheck.

Sample Program 6.1b:

#include <iostream>
using namespace std;

// Function prototypes
void printDescription();

void calPaycheck(float, int);

int main()
{
 float payRate;
 int hours;

cout << "Welcome to the Payroll Program." << endl;

printDescription(); // Call to the printDescription function

cout << endl << "Please input the pay per hour." << endl;
cin >> payRate;

cout << endl << "Please input the number of hours worked." <<
endl;
cin >> hours;
cout << endl << endl;

calPaycheck(payRate, hours); // Call to the calPaycheck function
cout << "We hope you enjoyed this program." << endl;

return 0;

}

CS 151 Review #6

//**
// printDescription
//
// Task: This function prints a program description
// Data in: no parameters received from the function call
//
//**

void printDescription() // The function heading
{

cout << "**"
 << endl << endl;
cout << "This program takes two numbers (pay rate and hours) " << endl;
cout << "and outputs gross pay. " << endl;
cout << "**"
 << endl << endl;

}

//**
// calPaycheck
//
// Task: This function computes and outputs gross pay
// Data in: rate and time
//
//**

void calPaycheck(float rate, int time)
{

float gross;

gross = rate * time;
cout << "The pay is " << gross << endl;

}

The bold sections of this program show the development of another function. This function is a bit different in
that it has parameters inside the parentheses of the call, heading and prototype. Recall that parameters are the
components of communication to and from a function and the call to that function. The function
calPaycheck needs information from the calling routine. In order to find the gross pay it needs the rate per
hour and the number of hours worked to be passed to it. The call provides this information by having parameters
inside the parentheses of the call calPaycheck(payRate,hours);. Both payRate and hours are
called actual parameters. They match in a one-to-one correspondence with the parameters in the function
heading which are called rate and time: void calPaycheck(float rate, int time)

The parameters in a function heading are called formal parameters. It is important to compare the call with the
function heading.

Call Function heading
calPaycheck(payRate,hours); void calPaycheck(float rate, int time)

1. The call does not have any word preceding the name whereas the function heading has the word void

preceding its name.

2. The call must NOT give the data type before its actual parameters whereas the heading MUST give the data
type of its formal parameters.

3. Although the formal parameters may have the same name as their corresponding actual parameters, they do
not have to be the same. The first actual parameter, payRate, is paired with rate, the first formal
parameter. This means that the value of payRate is given to rate. The second actual parameter, hours,
is paired with time, the second formal parameter, and gives time its value. Corresponding (paired)
parameters must have the same data type. Notice that payRate is defined as float in the main function
and thus it can legally match rate which is also defined as float in the function heading. hours is
defined as int so it can be legally matched (paired) with time which is defined as int in the function

CS 151 Review #6

heading.

4. The actual parameters (payRate and hours) pass their values to their corresponding formal parameters.
Whatever value is read into payRate in the main function will be given to rate in the calPaycheck
function. This is called pass by value. It means that payRate and rate are two distinct memory locations.
Whatever value is in payRate at the time of the call will be placed in rate’s memory location as its initial
value. It should be noted that if the function calPaycheck were to alter the value of rate, it would not
affect the value of payRate back in the main function. In essence, pass by value is like making a copy of
the value in payRate and placing it in rate. Whatever is done to that copy in rate has no effect on the
value in payRate. Recall that a formal parameter can have the same name as its corresponding actual
parameter; however, they are still two different locations in memory.

How does the computer know which location to go to if there are two variables with the same name? The

answer is found in a concept called scope. Scope refers to the location in a program where an indentifier is
accessible. All variables defined in the main function become inactive when another function is called and are
reactivated when the control returns to main. By the same token, all formal parameters and variables defined
inside a function are active only during the time the function is executing. What this means is that an actual
parameter and its corresponding formal parameter are never active at the same time. Thus there is no confusion as
to which memory location to access even if corresponding parameters have the same name. More on scope will be
presented in the next lesson set.

It is also important to compare the prototype with the heading.

Prototype Function heading
void calPaycheck(float, int); void calPaycheck(float rate, int time)

1. The prototype has a semicolon at the end and the heading does not.

2. The prototype lists only the data type of the parameters and not their name. However, the prototype can list

both and thus be exactly like the heading except for the semicolon. Some instructors tell students to copy the
prototype without the semicolon and paste it to form the function heading.

Let us look at all three parts—prototype, call and heading:

1. The heading MUST have both data type and name for all its formal parameters.

2. The prototype must have the data type and can have the name for its formal parameters.

3. The call MUST have the name but MUST NOT have the data type for its actual parameters.

CS 151 Review #6

Pass by Reference Pass by Reference Pass by Reference Pass by Reference

Suppose we want the calPaycheck function to only compute the gross pay and then pass this value back to
the calling function rather than printing it. We need another parameter, not to get information from the call but to
give information back to the call. This particular parameter can not be passed by value since any change made in
a function to a pass by value formal parameter has no effect on its corresponding actual parameter. Instead, this
parameter is passed by reference, which means that the calling function will give the called function the location
of its actual parameter instead of a copy of the value that is stored in that location. This then allows the called
function to go in and change the value of the actual parameter.

Example: Assume that I have a set of lockers each containing a sheet of paper with a number on it. Making a copy
of a sheet from a particular locker and giving that sheet to you will ensure that you will not change my original
copy. This is pass by value. On the other hand, if I give you a spare key to a particular locker, you could go to that
locker and change the number on the sheet of paper located there. This is pass by reference.

How does the program know whether a parameter is passed by value or by reference? All parameters are
passed by value unless they have the character & listed after the data type, which indicates a pass by reference.

Sample Program 6.1C:

#include <iostream>
#include <iomanip>
using namespace std;

// Function prototypes
void printDescription(); // prototype for a parameter-less function

void calPaycheck(float, int, float&); // prototype for a function with 3
 // parameters. The first two are
 // passed by value. The third is
 // passed by reference
int main()
{
 float payRate;
 float grossPay;
 float netPay;
 int hours;

 cout << "Welcome to the Payroll Program." << endl;

 printDescription(); // Call to the description function

 cout << endl << "Please input the pay per hour." << endl;
 cin >> payRate;
 cout << endl << "Please input the number of hours worked." << endl;
 cin >> hours;
 cout << endl << endl;

calPaycheck(payRate, hours, grossPay); // Call to the calPaycheck
 // function

 netPay = grossPay - (grossPay * .20);

 cout << "The net pay is " << netPay << endl;

cout << "We hoped you enjoyed this program." << endl;

return 0;

}

CS 151 Review #6

//**
// printDescription
//
// Task: This function prints a program description
// Data in: none
// Data out: no actual parameters altered
//
//**

void printDescription() // The function heading
{

cout << "**"
 << endl << endl;
cout << "This program takes two numbers (pay rate and hours) " << endl;
cout << "and outputs gross pay. " << endl;
cout << "**"
 << endl << endl;

}

//**
// calPaycheck
//
// Task: This function computes gross pay
// Data in: rate and time
// Data out: gross (alters the corresponding actual parameter)
//
//**

void calPaycheck(float rate, int time, float& gross)
{

gross = rate * time;
}

 Notice that the function calPaycheck now has three parameters. The first two, rate and time, are passed
by value while the third has an & after its data type indicating that it is pass by reference. The actual parameter
grossPay is paired with gross since they both are the third parameter in their respective lists. But since this pairing
is pass by reference, these two names refer to the SAME memory location. Thus what the function does to its
formal parameter gross changes the value of grossPay. After the calPaycheck function finds gross, control goes
back to the main function that has this value in grossPay. main proceeds to find the net pay, by taking 20% off the
gross pay, and printing it. Study this latest revision of the program very carefully. One of the lab exercises asks you
to alter it.

Scope Scope Scope Scope

As mentioned in Lesson Set 6.1, the scope of an identifier (variable, constant, function, etc.) is an indication of
where it can be accessed in a program. There can be certain portions of a program where a variable or other
identifier can not be accessed for use. Such areas are considered out of the scope for that particular identifier. The
header (the portion of the program before main) has often been referred to as the global section. Any identifier
defined or declared in this area is said to have global scope, meaning it can be accessed at any time during the
execution of the program. Any identifier defined outside the bounds of all the functions have global scope.
Although most constants and all functions are defined globally, variables should almost never be defined in this
manner.

Local scope refers to identifiers defined within a block. They are active only within the bounds of that

particular block. In C++ a block begins with a left brace { and ends with a right brace }. Since all functions
(including main) begin and end with a pair of braces, the body of a function is a block. Variables defined within
functions are called local variables (as opposed to global variables which have global scope). Local variables can
normally be accessed anywhere within the function from the point where they are defined. However, blocks can be
defined within other blocks, and the scope of an identifier defined in such an inner block would be limited to that
inner block. A function’s formal parameters (Lesson Set 6.1) have the same scope as local variables defined in the

CS 151 Review #6

outmost block of the function. This means that the scope of a formal parameter is the entire function. The
following sample program illustrates some of these scope rules.

Sample Program 6.2a:

#include <iostream>
using namespace std;

const PI = 3.14;

void printHeading();

int main()
{
 float circle;

cout << "circle has local scope that extends the entire main function" << endl;

{

 float square;

 cout << "square has local scope active for only a portion of main." << endl;
 cout << "Both square and circle can be accessed here "
 << "as well as the global constant PI." << endl;
 }

 cout << "circle is active here, but square is not." << endl;

 printHeading();

 return 0;
}

void printHeading()
{
 int triangle;

cout << "The global constant PI is active here "
 << "as well as the local variable triangle." << endl;

}

CS 151 Review #6

Scope Rules Scope Rules Scope Rules Scope Rules

Notice that the nested braces within the outer braces of main()indicate another block in which square is
defined. square is active only within the bounds of the inner braces while circle is active for the entire main
function. Neither of these are active when the function printHeading is called. triangle is a local variable
of the function printHeading and is active only when that function is active. PI, being a global identifier, is
active everywhere.

Formal parameters (Lesson Set 6.1) have the same scope as local variables defined in the outmost block of the
function. That means that the scope of formal parameters of a function is the entire function. The question may
arise about variables with the same name. For example, could a local variable in the function printHeading of
the above example have the name circle? The answer is yes, but it would be a different memory location than
the one defined in the main function. There are rules of name precedence which determine which memory
location is active among a group of two or more variables with the same name. The most recently defined variable
has precedence over any other variable with the same name. In the above example, if circle had been defined in
the printHeading function, then the memory location assigned with that definition would take precedence
over the location defined in main() as long as the function printHeading was active.

Lifetime is similar but not exactly the same as scope. It refers to the time during a program that an identifier

has storage assigned to it.

1. The scope of a global identifier, any identifier declared or defined outside all functions, is the entire program.
2. Functions are defined globally. That means any function can call any other function at any time.
3. The scope of a local identifier is from the point of its definition to the end of the block in which it is defined.

This includes any nested blocks that may be contained within, unless the nested block has a variable defined
in it with the same name.

4. The scope of formal parameters is the same as the scope of local variables defined at the beginning of the
function.

Why are variables almost never defined globally? Good structured programming assures that all communication
between functions will be explicit through the use of parameters. Global variables can be changed by any function.
In large projects, where more than one programmer may be working on the same program, global variables are
unreliable since their values can be changed by any function or any programmer. The inadvertent changing of
global variables in a particular function can cause unwanted side effects.

CS 151 Review #6

Functions that Return a Value Functions that Return a Value Functions that Return a Value Functions that Return a Value

The functions discussed in the previous lesson set are not “true functions” because they do not return a value to
the calling function. They are often referred to as procedures in computer science jargon. True functions, or value
returning functions, are modules that return exactly one value to the calling routine. In C++ they do this with a
return statement. This is illustrated by the cubeIt function shown in sample program 6.2c.

Sample Program 6.2c:

#include <iostream>
using namespace std;

int cubeIt(int x); // prototype for a user defined function that
 // returns the cube of the value passed to it.
int main()
{
 int x = 2;
 int cube;

cube = cubeIt(x); // This is the call to the cubeIt function.

cout << "The cube of " << x << " is " << cube << endl;

 return 0;

}

//**
// cubeIt
//
// task: This function takes a value and returns its cube
// data in: some value x
// data returned: the cube of x
//
//**

int cubeIt(int x) // Notice that the function type is int rather than void
{
 int num;

 num = x * x * x;
 return num;
}

The function cubeIt receives the value of x, which in this case is 2, and finds its cube which is placed in the
local variable num. The function then returns the value stored in num to the function call cubeIt(x). The value
8 replaces the entire function call and is assigned to cube. That is, cube = cubeIt(x) is replaced with cube =
8. It is not actually necessary to place the value to be returned in a local variable before returning it. The entire
cubeIt function could be written as follows:

int cubeIt(int x)
{
 return x * x * x;
}

For value returning functions we replace the word void with the data type of the value that is returned. Since

CS 151 Review #6

these functions return one value, there should be no effect on any parameters that are passed from the call. This
means that all parameters of value returning functions should be pass by value, NOT pass by reference. Nothing in
C++ prevents the programmer from using pass by reference in value returning functions; however, they should
not be used.

The calNetPay program (Sample Program 6.2b) has a module that calculates the net pay when given the
hours worked and the hourly pay rate. Since it calculates only one value that is needed by the call, it can easily be
implemented as a value returning function, instead of by having pay passed by reference.
Sample program 6.2d, which follows, modifies Program 6.2b in this manner.

Sample Program 6.2d:

#include <iostream>
#include <iomanip>
using namespace std;

float calNetPay(int hours, float rate);

int main()
{
 int hoursWorked = 20;
 float payRate = 5.00;
 float netPay;

 cout << setprecision(2) << fixed << showpoint;

 netPay = calNetPay(hoursWorked, payRate);

 cout << " The net pay is $" << netPay << endl;

return 0;
}

//**
// calNetPay
//
// task: This function takes hours worked and pay rate and multiplies
// them to get the net pay which is returned to the calling function.
// data in: hours worked and pay rate
// data returned: net pay
//
//**

float calNetPay(int hours, float rate)
{
 return hours * rate;
}

Notice how this function is called.

paynet = calNetPay (hoursWorked, payRate);

This call to the function is not a stand-alone statement, but rather part of an assignment statement. The call is used
in an expression. In fact, the function will return a floating value that replaces the entire right-hand side of the
assignment statement. This is the first major difference between the two types of functions (void functions and
value returning functions). A void function is called by just listing the name of the function along with its
arguments. A value returning function is called within a portion of some fundamental instruction (the right-hand
side of an assignment statement, condition of a selection or loop statement, or argument of a cout statement). As
mentioned earlier, another difference is that in both the prototype and function heading the word void is
replaced with the data type of the value that is returned. A third difference is the fact that a value returning

CS 151 Review #6

function MUST have a return statement. It is usually the very last instruction of the function. The following is a
comparison between the implementation as a procedure (void function) and as a value returning function.

 Value Returning Function Procedure

PROTOTYPE

float calNetPay (int hours,
float rate);

void calNetPay (float& net, int
hours, float rate);

CALL
netpay=calNetPay (hoursWorked,
payRate);

calNetPay (pay,
hoursWorked,payRate);

HEADING

float calNetPay (int hours,
float rate)

void calNetPay (float& net, int
hours, float rate)

BODY
{
 return hours * rate;
}

{
 net = hours * rate;
}

Functions can also return a Boolean data type to test whether a certain condition exists (true) or not (false).

Review #6 CS 151 SEC# ___________ Name _____________________________

Fill-in-the-Blank Questions

1. The word ______________ precedes the name of every function prototype and heading that

does not return a value back to the calling routine.

2. Pass by ___________ indicates that a copy of the actual parameter is placed in the memory

location of its corresponding formal parameter.

3. _____________ parameters are found in the call to a function.

4. A prototype must give the ____________ ___________ of its formal parameters and may

give their _____________.

5. A ____________ after a data type in the function heading and in the prototype indicates that

the parameter will be passed by reference.

6. Functions that do not return a value are often called _____________ in other programming

languages.

7. Pass by _____________ indicates that the location of an actual parameter, rather than just a

copy of its value, is passed to the called function.

8. A call must have the _____________ of its actual parameters and must NOT have the

_________ of those parameters.

9. _____________ refers to the region of a program where a variable is “active.”

10. ___________ parameters are found in the function heading.

11. In C++ all functions have ____________ scope.

12. A function returning a value should never use pass by ________________ parameters.

13. Every function that begins with a data type in the heading, rather than the word void, must

have a(n) _________ statement somewhere, usually at the end, in its body of instructions.

14. In C++ a block boundary is defined with a pair of _____________.

